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Abstract. Each year, the treatment decisions for more than 230, 000
breast cancer patients in the U.S. hinge on whether the cancer has metas-
tasized away from the breast. Metastasis detection is currently performed
by pathologists reviewing large expanses of biological tissues. This pro-
cess is labor intensive and error-prone. We present a framework to au-
tomatically detect and localize tumors as small as 100×100 pixels in
gigapixel microscopy images sized 100, 000×100, 000 pixels. Our method
leverages a convolutional neural network (CNN) architecture and ob-
tains state-of-the-art results on the Camelyon16 dataset in the challeng-
ing lesion-level tumor detection task. At 8 false positives per image, we
detect 92.4% of the tumors, relative to 82.7% by the previous best au-
tomated approach. For comparison, a human pathologist attempting ex-
haustive search achieved 73.2% sensitivity. We achieve image-level AUC
scores above 97% on both the Camelyon16 test set and an independent
set of 110 slides. In addition, we discover that two slides in the Came-
lyon16 training set were erroneously labeled normal. Our approach could
considerably reduce false negative rates in metastasis detection.
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1 Introduction

The treatment and management of breast cancer is determined by the disease
stage. A central component of breast cancer staging involves the microscopic
examination of lymph nodes adjacent to the breast for evidence that the cancer
has spread, or metastasized [3]. This process requires highly skilled pathologists
and is fairly time-consuming and error-prone, particularly for lymph nodes with
either no or small tumors. Computer assisted detection of lymph node metastasis
could increase the sensitivity, speed, and consistency of metastasis detection [16].
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In recent years, deep CNNs have significantly improved accuracy on a wide
range of computer vision tasks such as image recognition [14, 11, 19], object de-
tection [8], and semantic segmentation [17]. Similarly, deep CNNs have been
applied productively to improve healthcare (e.g.,[9]).

This paper presents a CNN framework to aid breast cancer metastasis de-
tection in lymph nodes. We build on [23] by leveraging a more recent Inception
architecture [20], careful image patch sampling and data augmentations. Despite
performing inference with stride 128 (instead of 4), we halve the error rate at 8
false positives (FPs) per slide, setting a new state-of-the-art. We also found that
several approaches yielded no benefits: (1) a multi-scale approach that mimics
the human cognition of a pathologist’s examination of biological tissue, (2) pre-
training the model on ImageNet image recognition, and (3) color normalization.
Finally, we dispense with the random forest classifier and feature engineering
used in [23] and find that the maximum function is an effective whole-slide clas-
sification procedure.

Related Work Several promising studies have applied deep learning to
histopathology. The Camelyon16 challenge winner [1] achieved a sensitivity of
75% at 8 FP per slide and a slide-level classification AUC of 92.5% [23]. The
authors trained a Inception (V1, GoogLeNet) [20] model on a pre-sampled set
of image patches, and trained a random forest classifier on 28 hand-engineered
features to predict the slide label. A second Inception model was trained on
harder examples, and predicted points were generated using the average of the
two models’ predictions. This team later improved these metrics to 82.7% and
99.4% respectively [1] using color normalization [4], additional data augmenta-
tion, and lowering the inference stride from 64 to 4. The Camelyon organizers
also trained CNNs on smaller datasets to detect breast cancer in lymph nodes
and prostate cancer biopsies [16]. [12] applied CNNs to segmenting or detecting
nuclei, epithelium, tubules, lymphocytes, mitosis, invasive ductal carcinoma and
lymphoma. [7] demonstrated that CNNs achieved higher F1 score and balanced
accuracy in detecting invasive ductal carcinoma. CNNs were also used to detect
mitosis, winning the ICPR12 [6] and AMIDA13 [22] mitosis detection compe-
titions. Other efforts at leveraging machine learning for predictions in cancer
pathology include predicting prognosis in non-small cell lung cancer [25].

2 Methods

Given a gigapixel pathology image (slide1), the goal is to classify if the image
contains tumor and localize the tumors for a pathologist’s review. This use case
and the difficulty of pixel-accurate annotation (Fig. 2) renders detection and
localization more important than pixel-level segmentation. Because of the large
size of the slide and the limited number of slides (270), we train models using

1 Each slide contains human lymph node tissue stained with hematoxylin and eosin
(H&E), and is scanned at the most common high magnification in a microscope,
“40X”. We also experimented with 2- and 4-times down-sampled patches (“20X”
and “10X”).
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Fig. 1. Left: three tumor patches and right: three challenging normal patches.

Fig. 2. Difficulty of pixel-accurate
annotations for scattered tumor
cells. Ground truth annotation is
overlaid with a lighter shade. Note
that the tumor annotations include
both tumor cells and normal cells
e.g.,white space representing adi-
pose tissue (fat).

Fig. 3. The three colorful blocks represent In-
ception (V3) towers up to the second-last layer
(PreLogit). Single scale utilizes one tower with
input images at 40X magnification; multi-scale
utilizes multiple (e.g.,2) input magnifications
that are input to separate towers and merged.

smaller image patches extracted from the slide (Fig. 1). Similarly, we perform
inference over patches in a sliding window across the slide, generating a tu-
mor probability heatmap. For each slide, we report the maximum value in the
heatmap as the slide-level tumor prediction.

We utilize the Inception (V3) architecture [20] with inputs sized 299×299
(the default) to assess the value of initializing from existing models pre-trained
on another domain. For each input patch, we predict the label of the center
128×128 region. A 128 pixel region can span several tumor cells and was also
used in [16]. We label a patch as tumor if at least one pixel in the center region
is annotated as tumor. We explored the influence of the number of parameters
by reducing the number of filters per layer while keeping the number of layers
constant (e.g., depth multiplier = 0.1 in TensorFlow). We denote these models
“small”. We also experimented with multi-scale approaches that utilize patches
at multiple magnifications centered on the same region (Fig. 3). Because prelim-
inary experiments did not show a benefit from using up to four magnifications,
we present results only for up to two magnifications.

Training and evaluating our models was challenging because of the large
number of patches and the tumor class imbalance. Each slide contains 10, 000
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to 400, 000 patches (median 90, 000). However, each tumor slide contains 20 to
150, 000 tumors patches (median 2, 000), corresponding to tumor patch percent-
ages ranging from 0.01% to 70% (median 2%). Avoiding biases towards slides
containing more patches (both normal and tumor) required careful sampling.
First, we select “normal” or “tumor” with equal probability. Next, we select a
slide that contains that class of patches uniformly at random, and sample patches
from that slide. By contrast, some existing methods pre-sample a set of patches
from each slide [23], which limits the breadth of patches seen during training.

To combat the rarity of tumor patches, we apply several data augmentations.
First, we rotate the input patch by 4 multiples of 90◦, apply a left-right flip
and repeat the rotations. All 8 orientations are valid because pathology slides
do not have canonical orientations. Next, we use TensorFlow’s image library
(tensorflow.image.random X ) to perturb color: brightness with a maximum delta
of 64/255, saturation with a maximum delta of 0.25, hue with a maximum delta
of 0.04, and contrast with a maximum delta of 0.75. Lastly, we add jitter to the
patch extraction process such that each patch has a small x,y offset of up to 8
pixels. The magnitudes of the color perturbations and jitter were lightly tuned
using our validation set. Pixel values are clipped to [0, 1] and scaled to [−1, 1].

We run inference across the slide in a sliding window with a stride of 128
to match the center region’s size. For each patch, we apply the rotations and
left-right flip to obtain predictions for each of the 8 orientations, and average
the 8 predictions.

Implementation Details We trained our networks with stochastic gradient
descent in TensorFlow [2], with 8 replicas each running on a NVIDIA Pascal GPU
with asynchronous gradient updates and batch size of 32 per replica. We used
RMSProp [21] with momentum of 0.9, decay of 0.9 and ε = 1.0. The initial
learning rate was 0.05, with a decay of 0.5 every 2 million examples. For refining
a model pretrained on ImageNet, we used an initial learning rate of 0.002.

3 Evaluation and Datasets

We use the two Camelyon16 evaluation metrics [1]. The first metric, the area
under receiver operating characteristic, (Area Under ROC, AUC) [10] evaluates
slide-level classification. This metric is challenging because of the potential for
FPs when 105 patch-level predictions are obtained per slide. We obtained 95%
confidence intervals using a bootstrap approach2.

The second metric, FROC [5], evaluates tumor detection and localization.
We first generate a list of coordinates and corresponding predictions from each
heatmap. Among all coordinates that fall within each annotated tumor region,
the highest prediction is retained. Coordinates falling outside tumor regions are
FPs. We use these values to compute the ROC. The FROC is defined as the
sensitivity at 0.25, 0.5, 1, 2, 4, 8 average FPs per tumor-negative slide [16]. This

2 Sample with replacement n slides from the dataset/split, where n is the number
of slides in the dataset/split, and compute the AUC. Repeat for a total of 2000
bootstrap samples, and report the 2.5 and 97.5 percentile values.
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metric is challenging because reporting multiple points per FP region can quickly
erode the score. We focused on the FROC as opposed to the AUC because there
are approximately twice as many tumors as slides, which improves the reliability
of the evaluation metric. Similar to the AUC, we report 95% confidence intervals
by computing the FROC over 2000 bootstrap samples of the predicted points.
In addition, we report the sensitivity at 8 FP per slide (“@8FP”) to assess the
false negative rate.

To generate points for FROC computation, the Camelyon winners [23, 1]
thresholded the heatmap to produce a bit-mask, and reported a single prediction
for each connected component in the bit-mask. By contrast, we use a non-maxima
suppression method similar to [6] that repeats two steps until no values in the
heatmap remain above a threshold t: (1) report the maximum and corresponding
coordinate, and (2) set all values within a radius r of the maximum to 0. Because
we apply this procedure to the heatmap, r has units of 128 pixels. t controls the
number of points reported and has no effect on the FROC unless the curve
plateaus before 8 FP. To avoid erroneously dropping tumor predictions, we used
a conservative threshold of t = 0.5.

Datasets Our work utilizes the Camelyon16 dataset [1], which contains 400
slides: 270 slides with pixel-level annotations, and 130 unlabeled slides as a
test set.3 We split the 270 slides into train and validation sets (Supplement)
for hyperparameter tuning. Typically only a small portion of a slide contains
biological tissue of interest, with background and fat comprising the remainder
(e.g., Fig. 2). To reduce computation, we removed background patches (gray
value > 0.8 [12]), and verified visually that lymph node tissue was not discarded.

Additional Evaluation: NHO-1 We digitized another set of 110 slides (57
containing tumor) from H&E-stained lymph nodes extracted from 20 patients
(86 biological tissue blocks4) as an additional evaluation set. These slides came
with patient- or block-level labels. To determine the slide labels, a board-certified
pathologist blinded to the predictions adjudicated any differences, and briefly
reviewed all 110 slides.

4 Experiments & Results

To perform slide-level classification, the current state-of-the-art methods apply
a random forest to features extracted from a heatmap prediction [1]. Unfortu-
nately, we were unable to train slide-level classifiers because the 100% validation-
set AUC (Table 1) rendered internal evaluation of improvements impossible.
Nonetheless, using the maximum value of each slide’s heatmap achieved AUCs
> 97%, statistically indistinguishable from the current best results.

For tumor-level classification, we find that the connected component ap-
proach [23] provides a 1−5% gain in FROC when the FROC is modest (< 80%),
by masking FP regions. However, this approach is sensitive to the threshold (up

3 The test slides labels were released recently as part of the training dataset for Came-
lyon17. We used these labels for evaluation, but not for parameter tuning.

4 A tissue block can contain multiple slides that vary considerably at the pixel level.
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Input & Validation Test
model size FROC @8FP AUC FROC @8FP AUC

40X 98.1 100 99.0 87.3 (83.2, 91.1) 91.1 (87.2, 94.5) 96.7 (92.6, 99.6)
40X-pretrained 99.3 100 100 85.5 (81.0, 89.5) 91.1 (86.8, 94.6) 97.5 (93.8, 99.8)
40X-small 99.3 100 100 86.4 (82.2, 90.4) 92.4 (88.8, 95.7) 97.1 (93.2, 99.8)
ensemble-of-3 - - - 88.5 (84.3, 92.2) 92.4 (88.7, 95.6) 97.7 (93.0, 100)

20X-small 94.7 100 99.6 85.5 (81.0, 89.7) 91.1 (86.9, 94.8) 98.6 (96.7, 100)
10X-small 88.7 97.2 97.7 79.3 (74.2, 84.1) 84.9 (80.0, 89.4) 96.5 (91.9, 99.7)
40X+20X-small 94.9 98.6 99.0 85.9 (81.6, 89.9) 92.9 (89.3, 96.1) 97.0 (93.1, 99.9)
40X+10X-small 93.8 98.6 100 82.2 (77.0, 86.7) 87.6 (83.2, 91.7) 98.6 (96.2, 99.9)

Pathologist [1] - - - 73.3* 73.3* 96.6
Camelyon16 winner [1, 23] - - - 80.7 82.7 99.4

Table 1. Results on Camelyon16 dataset (95% confidence intervals, CI). Bold indicates
results within the CI of the best model. “Small” models contain 300K parameters per
Inception tower instead of 20M. -: not reported. *A pathologist achieved this sensitivity
(with no FP) using 30 hours.

to 10 − 20% variance), and can confound evaluation of model improvements
by grouping multiple nearby tumors as one. By contrast, our non-maxima sup-
pression approach is relatively insensitive to r between 4 and 6, although less
accurate models benefited from tuning r using the validation set (e.g., 8). Fi-
nally, we achieve 100% FROC on larger tumors (macrometastasis), indicating
that most false negatives are comprised of smaller tumors.

Previous work (e.g., [24, 9]) has shown that pre-training on a different domain
improves performance. However, we find that although pre-training significantly
improved convergence speed, it did not improve the FROC (see Table 1: 40X vs.
40X-pretrained). This may be due to a large domain difference between pathol-
ogy images and natural scenes in ImageNet, leading to limited transferability. In
addition, our large dataset size (107 patches) and data augmentation may have
enabled the training of accurate models without pre-training.

Next, we studied the effect of model size. Although we were originally mo-
tivated by improved experiment turn-around time, we surprisingly found that
slimmed-down Inception architectures with only 3% of the parameters achieved
similar performance to the full version (Table 1: 40X vs. 40X-small). Thus, we
performed the remaining experiments using this smaller model.

We also experimented with a multi-scale approach inspired by pathologists’
workflow of examining a slide at multiple magnifications to get context. How-
ever, we find no performance benefit in combining 40X with an additional input
at lower magnification (Fig. 3). However, these combinations output smoother
heatmaps (Fig. 4), likely because of translational invariance of the CNN and
overlap in adjacent patches. These visual improvements can be deceptive: some
of the speckles in the 40X models reveal small non-tumor regions surrounded by
tumor.

Figures 1 and 3 highlight the variability in the images. Although the current
leading approaches report improvements from color normalization, our experi-
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Fig. 4. Left to right: sample image, ground truth (tumor in white), and heatmap
outputs (40X-ensemble-of-3, 40X+20X, and 40X+10X). Heatmaps of 40X and 40X-
ensemble-of-3 look identical. The red circular regions at the bottom left quadrant of
the heatmaps are unannotated tumor. Some of the speckles are either out of focus
patches on the image or non-tumor patches within a large tumor.

ments revealed no benefit (Supplement). This could be explained by our exten-
sive data augmentations causing our models to learn color-invariant features.

Finally, we experimented with ensembling models in two ways. First, averag-
ing over predictions across the 8 rotations/flips yielded a few percent improve-
ment in the metrics. Second, ensembling across independently trained models
yield additional but smaller improvements, and gave diminishing returns after 3
models.

Additional Validation We also tested our models on another 110 slides
that were digitized on different scanners, from different patients, and treated
with different tissue preparation protocols. Encouragingly, we obtained an AUC
of 97.6 (93.6, 100), on-par with our Camelyon16 test set performance.

Qualitative Evaluation We discovered tumors in two “normal” slides: 086
and 144. Fortunately, the challenge organizers confirmed that both were data
processing errors, and the patients were unaffected. Remarkably, both slides were
in our training set, suggesting that our model was relatively resilient to label
noise. In addition, we discovered an additional 7 tumor slides with incomplete
annotations: 5 in train, 2 in validation (Supplement).

Limitations Our errors were related to out-of-focus tissues (macrophages,
germinal centers, stroma), and tissue preparation artifacts. These errors could be
reduced by better scanning quality, tissue preparation, and more comprehensive
labels for different tissue types. In addition, we were unable to exhaustively
tune our hyperparameters owing to the near-perfect FROC and AUC on our
validation set. We plan to further develop our work on larger datasets.

5 Conclusion

Our method yields state-of-the-art sensitivity on the challenging task of detect-
ing small tumors in gigapixel pathology slides, reducing the false negative rate
to a quarter of a pathologist and less than half of the previous best result. We
further achieve pathologist-level slide-level AUCs in two independent test sets.
Our method could improve accuracy and consistency of evaluating breast can-
cer cases, and potentially improve patient outcomes. Future work will focus on
improvements utilizing larger datasets.
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6. Cireşan, D.C., et al.: Mitosis detection in breast cancer histology images with deep
neural networks. Int. Conf. on Medical Image Comput. and Comput. Interv. (2013)

7. Cruz-Roa, A., et al.: Automatic detection of invasive ductal carcinoma in whole
slide images with convolutional neural networks. SPIE medical imaging (2014)

8. Girshick, R., et al.: Rich feature hierarchies for accurate object detection and se-
mantic segmentation. In: Comput. Vis. and Pattern Recognit. (2014)

9. Gulshan, V., et al.: Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs. J. of the Am.
Medical Soc. 316(22), 2402–2410 (2016)

10. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology 143(1), 29–36 (1982)

11. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. Int. Conf. on Machine Learning (2015)

12. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis:
A comprehensive tutorial with selected use cases. J. of Pathol. Informatics 7 (2016)

13. Kothari, S., et al.: Pathology imaging informatics for quantitative analysis of whole-
slide images. J. of the Am. Medical Informatics Assoc. 20(6), 1099–1108 (2013)

14. Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural net-
works. Adv. in Neural Inf. Process. Syst. pp. 1097–1105 (2012)

15. van der Laak, J.A., et al.: Hue-saturation-density model for stain recognition in
digital images from transmitted light microscopy. Cytometry 39(4), 275–284 (2000)

16. Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of
histopathological diagnosis. Sci. Reports 6 (2016)

17. Long, J., et al.: Fully convolutional networks for semantic segmentation (2015)
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6 Supplement

6.1 Dataset Details

Number of Slides Number of Patches (M) Number of Tumors
Dataset/split Normal Tumor Total Normal Tumor Total Macro Micro

Camelyon-Train 127 88 215 13+8.9* 0.87 23 81 345
Camelyon-Validation 32 22 54 3.8+2.3* 0.28 6.4 14 58

Camelyon-Test 80 50 130 40 185
NHO-1 ? 53 57 110

Table 2. Number of slides, patches (in millions), and tumors in each dataset/split.
We excluded “Normal” slide 144 because preliminary experiments uncovered tumors
in this slide. Later experiments also uncovered tumors in “Normal” 086, but this slide
was used in training for the results presented in this paper. In addition, Test slide
049 was an accidental duplication by the organizers (Tumor 036), and was not used for
evaluation. Tumor sizes: macrometastasis (macro, > 2000µm), micrometastasis (micro,
> 200 & ≤ 2000µm). *normal patches extracted from the tumor slides. ?: additional
evaluation set with slide-level labels only.

6.2 Soft Labels

Our experiments used binary labels: a patch is positive if at least one pixel
in the center 128 x 128 region is annotated as tumor. We also explored an
alternative “soft label” approach in preliminary experiments, assigning as the
label the fraction of tumor pixels in the center region. However, we found that
the thresholded labels yielded substantially better performance.

6.3 Image Color Normalization

As can be seen in Fig. 1 & 3, the (H&E) stained tissue vary significantly in
color. These differences arise from differences in the underlying biological tissue,
physical and chemical preparation of the slide, and scanner adjustments. Be-
cause reducing these variations have improved performances in other automated
detection systems [4, 13], we experimented with a similar color normalizing ap-
proach. However, we have not found this normalization to improve performance,
and thus we detail our approach for reference only. This lack of improvement
likely stems from our extensive color perturbations encouraged our models to
learn color-insensitive features, and thus the perturbations were unnecessary.

First, we separate color and intensity information by mapping the raw RGB
values to a Hue-Saturation-Density (HSD) space [15], and then normalize each
component separately. This maps each color channel (IR, IG, IB) ∈ [0, 255]3 to a
corresponding “light density values” via Dν = − ln((Iν +1)/257), ν ∈ {R,G,B},
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followed by applying an HSI color space transformation, with D = (DR +DB +
DG)/3 being the intensity, and cx = DR

D − 1 and cy = (DG − DB)/(
√

3 · D)
denoting the Cartesian coordinates that span the two-dimensional hue-saturation
plane. We chose the HSD mapping over a direct HSI mapping of RGB values
[15], because it is more compatible with the image acquisition physics and yields
more compact distributions in general.

Next, we fit a single Gaussian to the color coordinates (cx, cy)i of the pixels
in all tissue-containing patches, i.e. compute their empirical mean µ = (µx, µy)T

and covariance Σ ∈ R2×2, and then determine the transformation T ∈ R2×2

of the covariance Σ to a reference covariance matrix ΣR using the Monge-
Kantorovitch approach presented in [18]: T = Σ−1/2

(
Σ1/2ΣRΣ

1/2
)
Σ−1/2. Sub-

sequently, the color values are normalized by applying the mapping:[
c′x
c′y

]
= T

([
cx
cy

]
−
[
µx
µy

])
+

[
µRx
µRy

]
. (1)

Intensity values, Di, are normalized in the same manner, i.e. by applying the
one-dimensional version of Equation 1 in order to transform the empirical mean
and variance of all patch intensities to a reference intensity mean and variance.

As reference means and variances for the color and intensity component,
respectively (i.e. µRv , Σ

R for color), we chose the component-wise medians over
the corresponding statistical moments of all training slides.

Finally, we map the normalized (c′x, c
′
y, D

′) values back to RGB space by
first applying the inverse HSI transform [15], followed by inverting the non-
linear mapping, i.e. by applying Iν = exp(−Dν) · 257− 1 to each component ν ∈
{R,G,B}.

We applied this normalization in two ways. First, we applied this at inference
only, by testing a model (“40X-small” in Table 1) on color-normalized slides. Un-
fortunately, this resulted in a few percent drop in FROC. Next we trained two
models on color-normalized slides, both with and without the color perturba-
tions. We then tested these models on color-normalized slides. Neither approach
improved the performance.

6.4 Sample Results

Tumor slides with incomplete annotations At the outset, 11 tumor slides
were known to have non-exhaustive pixel level annotations: 015, 018, 020, 029,
033, 044, 046, 051, 054, 055, 079, 092, and 095. Thus, we did not use non-tumor
patches from these slides as training examples of normal patches. Over the course
of our experiments, we discovered several more such cases that we verified with
a pathologist: 010, 025, 034, 056, 067, 085, 110.
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Fig. 5. Left: a patch from a H&E-stained
slide. The darker regions are tumor, but
not the lighter pink regions. Right: the
corresponding predicted heatmap that ac-
curately the tumor cells while assigning
lower probabilities to the non-tumor re-
gions.

Fig. 6. Left: a patch from a H&E-stained
slide, “Normal” 086. The larger pink cells
near the top are tumor, while the smaller
pink cells at the bottom are macrophages,
a normal cell. Right: the corresponding
predicted heatmap that accurately iden-
tifies the tumor cells while ignoring the
macrophages.


